Generalized Skew Derivation On (σ, τ) -Lie Ideals in Prime Rings

Vannali Sreenivasulu^{1*}, and Dr. R. Bhuvana Vijaya²

^{1*}Research Scholar, Department of Mathematics, Jawaharlal Nehru Technological University Ananthapur, Ananthapuramu-515002, Andhra Pradesh, India.

Email Id: sreelakshminivas@gmail.com

² Professor, Department of Mathematics, JNTUA College of Engineering Ananthapuramu-515002, Andhra Pradesh, India. Email Id:bhuvanarachamalla@gmail.com

Abstract: In the present paper, we extend some results concerning generalized skew derivation on (σ, τ) -Lie ideals of a prime rings.

Keywords: Prime ring, (σ, τ) -Lie ideal, generalized skew derivation, skew derivation.

1. INTRODUCTION

Throughout this paper, R is an associative ring, Ua left ideal of R, $f: R \to R$ a generalized skew derivation associated with a nonzero skew derivation d and α an automorphism of R. A ring R is said to be prime ring , if for any $x, y \in R, xRy = 0$ implies that either x = 0 or y = 0 and is called semiprime ring if for any $x \in R$, xRx = 0 implies x = 0. An additive mapping $d : R \rightarrow R$ is said to be a derivation of R if for any $x, y \in R$, d(xy) = d(x)y +xd(y). By a skew derivation of R we mean an additive map d from R into itself which satisfies the rule $d(xy) = d(x)y + \alpha(x)d(y)$ for all $x, y \in R$ and α being an automorphism of R. For $\alpha = 1$ is the identity automorphism of R, d is known as a derivation of R. In particular, for a fixed $a \in R$, the mapping $I_a : \mathbb{R} \to \mathbb{R}$ given by $I_a(x) = [x, a]$ is a derivation called an inner derivation of R. The commutativity of prime rings with derivation was initiated by E. C. Posner [18]. Over the last two decades, a great deal of work has been done on this subject. A function $f_{a,b}: R \to R$ is called a generalized inner derivation if $f_{a,b}(x) = ax + xb$ for some fixed *a*, *b* \in *R*. It is straightforward to note that $f_{a,b}$ is a generalized inner derivation, then for any $x, y \in R$, $f_{a,b}(xy) = f_{a,b}(x)y + x[y, b] = f_{a,b}(x)y + xI_b(y)$ where I_b is an inner derivation. In view of the above observation, the concept of generalized derivation is introduced in [15] and [8] as follows: An additive mapping $f: R \rightarrow$ R is called a generalized derivation associated with a derivation d if f(xy) = f(x)y + xd(y) for all x, $y \in R$.

An additive mapping $G: R \to R$ is called a generalized inner derivation if G(x) = ax + xb, for fixed $a, b \in R$. For such a mappings $G(xy) = G(x)y + x[y,b] = G(x)y + xI_b(y)$, for all $x, y \in R$. Motivated by the above observation, Bresar introduced the concept of generalized derivation as

well as left multiplier mapping of R into R. The generalized derivation G of R is defined as an additive mapping $G : R \to R$ such that G(xy) = G(x)y +xd(y) holds for any $x, y \in R$, where d is a derivation of R. So, every derivation is a generalized derivation, but the converse is not true in general. If d = 0, then we have G(xy) = G(x)y for all $x, y \in R$, which is called a left multiplier mapping of R. Thus, generalized derivation generalizes both the concepts,. derivation on R. An additive mapping $G: R \rightarrow R$ is said to be a (right) generalized skew derivation of R if there exists a skew derivation d of R with an associated automorphism α such that G(xy) = $G(x)y + \alpha(x)d(y)$ holds for all $x, y \in R$. For any two elements $x, y \in R$, [x, y] will denote the commutator element xy - yx and $[x, y]_{\sigma, \tau} = x\sigma(y) \tau(y)x$ and xoy = xy + yx. We use extensively the following basic commutator identities:

- i. [xy, z] = x[y, z] + [x, z]y
- ii. [x, yz] = [x, y]z + y[x, z]
- iii. $[xy, z]_{\sigma, \tau} = x[y, z]_{\sigma, \tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma, \tau}y$
- iv. $[x, yz]_{\sigma, \tau} = \tau(y)[x, z]_{\sigma, \tau} + [x, y]_{\sigma, \tau} \sigma(z).$

Let *U* be an additive subgroup of *R*. The definition of (σ, τ) -Lie ideal of *R* is given in [16] as follows:

- i. U is a (σ, τ) -right Lie ideal of R if $[U,R]_{\sigma,\tau} \subset U$.
- ii. U is a (σ, τ) -left Lie ideal of R if $[R,U]_{\sigma,\tau}$ $\subset U$
- *iii.* U is a (σ, τ) -Lie ideal of R, if U is both a (σ, τ) -right Lie ideal and (σ, τ) -left Lie ideal of R..

One may observe that the concept of generalized derivation includes the concept of derivations and generalized inner derivations, also of the left multipliers when d = 0. Hence it should be interesting to extend some results concerning these notions to generalized derivations. Some recent results were shown on generalized derivation in [8], [15] and [1].

International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

Furthermore, some authors have also studied generalized derivation in the theory of operator algebras and C^* -algebras (see for example [15]). On the other hand, in [10, Definition 1], Golbasi and Kaya introduced the notation of right generalized derivation and left generalized derivation with associated derivation *d* as follows:

An additive mapping $f : R \to R$ is said to be right generalized derivation with associated derivation d if f(xy) = f(x)y + xd(y) for all $x, y \in R$ and f is said to be left generalized derivation with associated derivation dif f(xy) = d(x)y + xf(y) for all $x, y \in R$. An additive map f is said to be a generalized derivation with associated derivation d if it is both a left and right generalized derivation with associated derivation d. Of course, every derivation is generalized derivation and also, the definition of generalized derivation given in Bresar [8] is a right generalized derivation with associated derivation d according to above definition. In this context, we mention the definition of generalized derivation that means two sided generalized derivation.

In [1], Argac and Albas proved that if a prime ring *R* has (d, α) , (g, β) nonzero generalized derivations such that ad(x) = g(x)a for all $x \in R$, then one of the following possibilities holds; (i) $a \in C$ (extended centroid). (ii) There exist $p,q \in Q_r(R_C)$ (a right Martindale ring of quotients) such that $\alpha(x) = [x, p], \beta$ $(x) = [q, x], qa \in C, p = \lambda a$, where $\lambda \in C$, for all $x \in R$. And the same result extended in [9], Oznur Golbasi and Emine Koc for generalized derivations on (σ, τ) left Lie ideal of *R*.

In [11], Herstein showed that if R is a prime ring of characteristic different from two and d is a nonzero derivation such that $d(R) \subset Z$, then R must be commutative. Several authors investigated this result for Lie ideals or (σ, τ) Lie ideals of a prime ring admitting derivation or generalized derivation (see [7], [6], [5], [9]). Oznur Golbasi and Emine Koc proved extend some results on generalized derivations of semiprime rings in [2] and corresponding results for (σ, τ) -Lie ideal of a prime ring with generalized derivation [10]. Later on so many authors are extended the results for generalized (α, β) -derivation on ideals, Lie ideals in prime rings, semi prime rings. In [14], the author given some results on generalized (α, β) derivation on Lie Ideals of σ -prime rings. Now our aim is to extend [10], Oznur Golbasi and Emine Koc the results for generalized skew derivation on (σ, τ) -Lie ideal of a prime ring.

Throughout the present paper, we assume that *R* be a prime ring with characteristic not two, α , β , σ and τ are automorphisms and *U* a nonzero (σ , τ)-Lie ideal of *R*. We denote a generalized (α , β)-derivation *f*

: $R \to R$ with a non-zero (α, β) -derivation d of R by (f, d). If d = 0, then $f(xy) = f(x) \alpha(y)$ for all $x, y \in R$ and there exists $q \in Q_r(R_c)$ such that f(x) = qx for all $x \in R$ by [15, Lemma 2]. So, we assume that $d \neq 0$.

An additive mapping $f : R \to R$ is said to be right generalized (α, β) –derivation with associated non-zero (α, β) -derivation *d* if

(1.1) $f(xy) = f(x) \alpha(y) + \beta(x)d(y)$ for all x, y $\in R$ and f is said to be left generalized (α, β) -derivation with associated derivation d if

(1.2)
$$f(xy) = d(x) \alpha(y) + \beta(x) f(y) \text{ for all } x, y \in R.$$

f is said to be a generalized derivation with associated derivation d if it is both a left and right generalized derivation with associated derivation d.

2. PRELIMINARIES :

Lemma 1. [4, Lemma 3] Let R be a prime ring with char $R \neq 2$, $a \in R$ and a U = 0 (or U = 0).

- i. If U is a (σ, τ) -right Lie ideal of R, then a = 0 or $U \subset C_{\sigma, \tau}$.
- ii. If U is a (σ, τ) -left Lie ideal of R, then a = 0 or U $\subset Z$.

Lemma 2. [3, Lemma 6] Let *R* be a prime ring with char $R \neq 2$ and $U \ a(\sigma, \tau)$ -left Lie ideal of *R*. Suppose there exists $a \in R$ such that [a, U] = 0. Then $a \in Z$ or σ $(u) + \tau (u) \in Z$ for all $u \in U$.

Lemma 3. [13, Theorem 2] Let R be a prime ring with char $R \neq 2$ and U a non-central (σ, τ) -left Lie ideal of R. Then there exist a nonzero ideal M of R such that $[R,M]_{\sigma, \tau} \subset U$ and $[R,M]_{\sigma, \tau} \nsubseteq C_{\sigma, \tau}$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

3. MAIN RESULTS

Theorem - 1 : Let *R* be a prime ring with char $R \neq 2$, *f* be a generalized skew derivation of *R* with a nonzero skew derivation *d* and an automorphism α of *R* and *U* a non-central (σ , τ)-left Lie ideal of *R*. If f(U) = 0, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof: Suppose to the contrary that $\sigma(u) + \tau(u) \notin Z$ for some $u \in U$. By Lemma 3, there exists a nonzero ideal *M* of *R* such that $[R,M]_{\sigma,\tau} \subset U$, but $[R,M]_{\sigma,\tau} \notin C_{\sigma,\tau}$. For any $x \in R$ and $m \in M$, $[x, m]_{\sigma,\tau} \sigma(m) = [x\sigma(m),m]_{\sigma,\tau} \in U$. Then $0 = f([x, m]_{\sigma,\tau} \sigma(m)) = f([x, m]_{\sigma,\tau})\sigma(m) + \alpha([x, m]_{\sigma,\tau})d(\sigma(m))$ and so

(3.1) $\alpha([x, m]_{\sigma, \tau})d(\sigma(m)) = 0$ for all $x \in R, m \in M$. Replacing x by xy, $y \in R$ in (3.1) and applying (3.1), we get $0 = \alpha([xy, m]_{\sigma, \tau})d(\sigma(m)) = \alpha(x[y, m]_{\sigma, \tau}d(\sigma(m)) + \alpha([x, \tau(m)]y)d(\sigma(m))$. That is, $\alpha([x, \tau(m)])Rd(\sigma(m)) = 0$ for all $x \in R, m \in M$. Since R is a prime ring, it

International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org

follows that $\alpha([x, \tau(m)]) = 0$ or $d(\sigma(m)) = 0$ for all $m \in M$. If $\alpha([x, \tau(m)]) = 0$, since α is an automorphism of R, applying α^{-1} on both sides we get $[x, \tau(m)] = 0$, hence $m \in Z$. We set $K = \{m \in M \mid m \in Z\}$ and $L = \{m \in M \mid d(\sigma(m)) = 0\}$. Clearly each of K and L is additive subgroup of M. Moreover, M is the set-theoretic union of K and L. But a group can not be the set-theoretic union of its two proper subgroups, hence K = M or L = M. In the former case, $M \subset Z$ which forces R to be commutative. This is impossible because of $U \nsubseteq Z$. In the latter case, $d(\sigma(M)) = 0$. Since R is a prime ring and $\sigma(M)$ a nonzero ideal of R, we get d = 0, a contradiction. This completes the proof.

Theorem - 2 : Let *R* be a prime ring with char $\mathbb{R} \neq 2$, *f* be a generalized skew derivation of *R* with a nonzero skew derivation *d* and α an automorphism α of *R* and *U* a noncentral (σ , τ)-left Lie ideal of *R*. If $d(Z) \neq 0$ and $[f(U),a]_{\sigma,\tau} = 0$, then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof: Choose $z \in Z$ such that $d(z) \neq 0$. It is easily seen that $d(z) \in Z$. For all $x \in R$, $u \in U$, we get

 $0 = [f([x, u]_{\sigma, \tau} z), a]_{\sigma, \tau}$

 $= [f([x, u]_{\sigma, \tau}) z + \alpha ([x, u]_{\sigma, \tau}) d(z), a]_{\sigma, \tau}$

 $= [f([x, u]_{\sigma, \tau}), a]_{\sigma, \tau} z + f([x, u]_{\sigma, \tau})[z, \sigma(a)] + [\alpha([x, u]_{\sigma, \tau}), a]_{\sigma, \tau} d(\alpha(z)) + \alpha([x, u]_{\sigma, \tau})[d(\alpha(z)), \sigma(a)]$

and so α ([x, u]_{σ , τ}, a]_{σ , τ})d(z) = 0 for all $x \in R$, $u \in U$. Since R is prime and $0 \neq d(z) \in Z$, we see that

(3.2) $\alpha([x, u]_{\sigma, \tau}, a]_{\sigma, \tau}) = 0$ for all $x \in R$, $u \in U$. Substituting $x\sigma(u)$ for x in (3.2) and using this equation, we obtain $\alpha([x, u]_{\sigma, \tau})\sigma([u, a]) = 0$ for all $x \in R$, $u \in U$. Now, taking xy instead of x in the last equation, we obtain $[R, \tau(u)] R \sigma([u, a]) = 0$ for all $u \in U$. Since R is a prime ring, it follows either $u \in Z$ or [u, a] = 0 for all $u \in U$. By a standard argument one of these must hold for all $u \in U$. If $u \in Z$ for all $u \in U$, then $U \subset Z$, and so $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ by Lemma 2. Thus the proof is completed.

Theorem – **3** : Let *R* be a prime ring with char $R \neq 2$, (*f*, *d*), (*g*, *h*) two generalized skew derivations of *R* and *U* a noncentral (σ , τ)-left Lie ideal of *R*. If *f* (*u*) $v = \alpha(u)g(v)$ for all $u, v \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof: Suppose that $\sigma(u) + \tau(u) \notin Z$ for some $u \in U$. Then there exists a nonzero ideal M of R such that $[R,M]_{\sigma,\tau} \subset U$ and $[R,M]_{\sigma,\tau} \notin C_{\sigma,\tau}$ by Lemma 3. For any $x \in R$ and $m \in M$, $\tau(m)[x, m]_{\sigma,\tau} = [\tau(m)x, m]_{\sigma,\tau} \in U$.

Taking $\tau(m)[x, m]_{\sigma, \tau}$ instead of *u* in the hypothesis, we get

 $f(\tau(m)[x, m]_{\sigma, \tau})v = \alpha(\tau(m)[x, m]_{\sigma, \tau}) g(v),$ $d(\tau(m))[x, m]_{\sigma, \tau}v + \alpha(\tau(m))f([x, m]_{\sigma, \tau})v = \alpha(\tau(m)[x, m]_{\sigma, \tau}) g(v).$ That is, $d(\tau(m))[x, m]_{\sigma, \tau}v + \alpha(\tau(m))\alpha([x, m]_{\sigma, \tau})g(v) = \alpha(\tau(m)\alpha([x, m]_{\sigma, \tau})g(v)).$

Hence we get, $d(\tau(m))[x, m]_{\sigma, \tau}v = 0$ for all $m \in M, v \in U$, $x \in R$. That is $d(\tau(m))[x, m]_{\sigma, \tau}U = (0)$ for all $m \in M$, $x \in R$. By Lemma 1, we obtain that

(3.3) $d(\tau(m))[x, m]_{\sigma, \tau} = 0$ for all $m \in M, x \in R$. Replacing x by xy, $y \in R$ in (2.3) and using (2.3), we have $d(\tau(m))x[y, \sigma(m)] = 0$ and so $d(\tau(m))R[y, \sigma(m)] = 0$ for all $m \in M, y \in R$. Since R is a prime ring, it follows that $m \in Z$ or $d(\tau(m)) = 0$ for all $m \in M$. Let $L = \{m \in M \mid m \in Z\}$ and $K = \{m \in M \mid d(\tau(m)) = 0\}$. By the same method in Theorem-1, we get d = 0, a contradiction. This completes the proof.

An immediately results of Theorem-3 we give the following corollaries.

Corollary – **1.** *Let R be a prime ring with* char $R \neq 2$, *(f, d), (g, h) two generalized skew derivations of R and U a noncentral (\sigma, \tau)-left Lie ideal of R*. If *f (u)u* = $\alpha(u)g(u)$ for all $u \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

In particular if we take f = g, then we have the following corollary, which is a generalization of [13, Theorem] for the case when characteristic of underlying ring is different from two.

Corollary - 2. Let *R* be a prime ring with char $R \neq 2$, *f* is a generalized skew derivation of *R* and *U* a noncentral (σ, τ) -left Lie ideal of *R*. If $[\alpha(u), f(u)] = 0$ for all $u \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Corollary - 3. Let *R* be a prime ring with char $R \neq 2$, *d*, *h* two nonzero skew derivations of *R* and *U* a noncentral (σ, τ) -left Lie ideal of *R*. If $d(u)v = \alpha(u)h(v)$ for all $u, v \in U$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Theorem - 4. Let *R* be a prime ring with char $R \neq 2$, *U* a nonzero (σ, τ) -left Lie ideal of *R*. Let $a, b \in R$ and $f: R \to R$ be a mapping such that f(x) = xa - bx for all $x \in R$. If $f(U) \subset U$ and $f(U) \subset Z$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof : By the hypothesis, for all $u \in U$, we have $f(u) = ua - bu \in Z$. Commuting this element by u, we obtain that,

(3.4) u[a, u] = [b, u]u for all $u \in U$.

A linearization of (3.4) yields that u[a, v] + v[a, u] = [b, v]u + [b, u]v. Taking f(u) instead of u in the above equation, we find that f(u)[a, v] + v[a, f(u)] = [b, v]f(u) + [b, f(u)]v. Using $f(u) \in Z$ in the last equation, we have

(3.5) f(u)([a, v] - [b, v]) = 0 for all $u, v \in U$.

Using the primeness of *R* and $f(u) \in Z$ in (2.5), we conclude that f(U) = 0 or [a - b, U] = (0). If [a - b, U] = (0), then $a-b \in Z$ or $\sigma(u)+\tau(u) \in Z$ for all $u \in U$ by

International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

Lemma 2. Now, we assume that $a - b \in Z$. From (2.4), we obtain

 $u^2a - uau = ubu - bu^2$ for all $u \in U$. (3.6)Let a - b = a, $a \in Z$. Writing a = b + a in (2.6), we have $u^2b + u^2\alpha - ubu - u\alpha u = ubu - bu^2$ and $u^2b + u^2\alpha + bu^2 = 2ubu + u\alpha u$. Using $\alpha \in Z$ in the last equation, we get $u^2b + bu^2 - 2ubu = 0$, and $u^2b - bu^2 - bu^2 = 0$. $ubu = ubu - bu^2$ and so u[u, b] = [u, b]u. That is [u, [u, b] = [u, b]u. b]] = 0 for all $u \in U$. This yields that $[u, d_b(u)] = 0$, where $d_b: R \to R$, $d_b(x) = [x, b]$ is an inner derivation of *R*. Therefore $\sigma(u) + \tau(u) \in Z$ for all $u \in U$ or $d_b = 0$ by Corollary 2. If $d_b = 0$, then $b \in Z$. We have f(u) = $ua - bu = u(a - b) \in Z$, by the hypothesis. Since a - b $\in Z$ and R is a prime ring, we obtain that $U \subset Z$ or a b = 0. Now, we assume that a = b. Using $b \in Z$, we get f(x) = xa - bx = xb - bx = 0 for all $x \in U$. As a result f = 0, and so f(U) = 0. Hence $\sigma(u) + \tau(u) \in Z$ for all u \in U according to Lemma 4. This completes the proof.

Corollary 4. Let *R* be a prime ring with char $R \neq 2$, *U* a nonzero (σ, τ) -Lie ideal of *R* and $a \in R$. If $[U, a]_{\sigma, \tau} \subset Z$, then $a \in Z$ or $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Proof: Let *f* be a mapping such that $f(x) = [x, a]_{\sigma, \tau} = x\sigma(a) - \tau(a)x$ for all $x \in R$. Since *U* is a (σ, τ) - Lie ideal, we have $f(U) \subset U$. By Theorem 2, we get $\sigma(u) + \tau(u) \in Z$ for all $u \in U$. \Box

Corollary 5. Let *R* be a prime ring with char $R \neq 2$, *U* a nonzero (σ, τ) -Lie ideal of *R*. If $[U,U]_{\sigma,\tau} \subset Z$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

REFERENCES

- E. Albas and N. Argac, *Generalized derivations* of prime rings, Algebra Colloq. 11 (2004), no. 3, 399–410.
- [2] N. Argac, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006), no. 3, 371–380.
- [3] N. Aydın, On one sided (σ, τ)-Lie ideals in prime rings, Turkish J. Math. 21 (1997), no. 3, 295–301.
- [4] N. Aydın and H. Kandamar, (σ, τ) -Lie ideals in prime rings, Turkish J. Math. **18** (1994), no. 2, 143–148.

- [5] N. Aydın, K. Kaya, and O. Golbasi," Some results on one-sided generalized Lie ideals with derivation, Math. Notes (Miskolc) 3 (2002), no. 2, 83–89.
- [6] N. Aydın and M. Soyturk, (σ, τ)-Lie ideals in prime rings with derivation, Turkish J. Math. 19 (1995), no. 3, 239–244.
- [7] J. Bergen, I. N. Herstein, and J. W. Kerr, *Lie ideals and derivations of prime rings*, J. Algebra 71 (1981), no. 1, 259–267.
- [8] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89–93.
- [9] O. Golbasi and, K. Kaya " On Lie ideals with generalized derivations, Sibirsk. Mat. Zh. 47 (2006), no. 5, 1052–1057; translation in Siberian Math. J. 47 (2006), no. 5, 862–866.
- [10] O. Golbasi and E. Koc," on (σ, τ) -Lie ideals with generalized derivation, Bull. Korean Math. Soc. 47 (2010), No. 6, pp. 1121-1129.
- [11]I. N. Herstein, On the Lie structure of an associative ring, J. Algebra 14 (1970), 561–571.
- [12]K. Kaya, (σ, τ) -Lie ideals in prime rings, An. Univ. Timisoara Ser. Stiinte Math. **30** (1992), no. 2-3, 251–255.
- [13]K. Kaya and N. Aydın, Some results in generalized Lie ideals, Albasapr Sci. J. Isued by Jordan University for Woman 3 (1999), no. 1, 53–61.
- [14]V. Sreenivasulu, and Dr. R. Bhuvana Vijaya, Generalized (α , β)-derivation on Lie Ideals in σ prime rings, International Journal of Applied Engineering Research Volume 13, Number 14 (2018)pp.11508-11511.